Wednesday, August 7, 2019
Computational modeling of cerebellar model articulation controller Dissertation
Computational modeling of cerebellar model articulation controller (CMAC) and it's application - Dissertation Example It will address simulations of the cerebellum and neural networks to accomplish biped robot leg and control leg swing in environments with obstacles, in multi output, non-linear systems. According to Miller, Glanz, & Kraft, the cerebellar mode articulation controller (CMAC) can serve as a substitute method to back propagation (Miller, Glanz, & Kraft, 1990). The method includes a footstep planning strategy that is based on the Q-learning concept for biped robot control in dynamical environments. The effectiveness of major problem solving methods in control robot technology research is also of central focus. Predictable and unpredictable dynamic obstacles encountered in the system, such as memory usage, are discussed and a strategy to overcome these obstacles is presented. The empirical analysis includes identification of likely Cerebellum Model Articulation Controller (CMAC) problems in specific environments, inputs and outputs, and viable solutions. The aim of this research is to pre sent a HCAQ-CMAC model that provides memory size and footstep planning solutions for the biped robot in a dynamic environment. Table of Contents ACKNOWLEDGEMENTSâ⬠¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦...2 ABSTRACTâ⬠¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦....3 Contentsâ⬠¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦.4 List of Figuresâ⬠¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦ â⬠¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦.â⬠¦6 List of Tablesâ⬠¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦.â⬠¦..9 Chapter 1 Overviewâ⬠¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦..10 SECTION 1.1 Timeline of developmentâ⬠¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦.â⬠¦Ã¢â¬ ¦.â⬠¦10 Section 1.2 The cerebellumâ⬠¦...12 subsection 1.2.1 INPUTSâ⬠¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦..â⬠¦.â⬠¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦ .14 subsection 1.2.2 OUTPUTSâ⬠¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦..â⬠¦Ã¢â¬ ¦.â⬠¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦.14 subsection 1.2.3 CEREBELLAR CORTEXâ⬠¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦..â⬠¦Ã¢â¬ ¦.â⬠¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦.15 CHAPTER 2 Brain Computer Interface (BCI) INPUT AND OUTPUTâ⬠¦Ã¢â¬ ¦Ã¢â¬ ¦.â⬠¦Ã¢â¬ ¦Ã¢â¬ ¦...16 Section 2.1 Neural Networks â⬠¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦.â⬠¦Ã¢â¬ ¦..â⬠¦Ã¢â¬ ¦Ã¢â¬ ¦19 Section 2.2 Q-Learning AND FUZZY CMACâ⬠¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦...â⬠¦Ã¢â¬ ¦Ã¢â¬ ¦.â⬠¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦.â⬠¦Ã¢â¬ ¦.22 Chapter 3 theoryâ⬠¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦.â⬠¦. 28 Section 3.1 The cerebellar mode articulation controller (CMAC)â⬠¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦. 28 Section 3.2 CMAC Hierarchically Clustered Adaptive Quantizationâ⬠¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦.34 subsection 3.2.1 Mossy Fibersâ⬠¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦.â⬠¦Ã¢â¬ ¦.36 Section 3.3 CMAC for design of Biped Robotâ⬠¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦ 38 subsection 3.3.2 heuristicsâ⬠¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦40 CHAPTER 4 fOOTSEP pLANNING; fUZZY qâ⬠¦Ã¢â¬ ¦Ã¢â ¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦44 section 4.1 Control Strategy for obstacle Avoidance â⬠¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦Ã¢â¬ ¦
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.